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ABSTRACT

This report presents results of a study on elastic-airframe dynamics that
are important frou, the standpuint of flight control system design. Approximate
transfer functions, are given in literal. terms for three classes of vehicles.
These a,.e of such a form that the important poles and zeros are related directly
to simple functioL. of aerodynamic, elastic, and inertial properties. The aero-
elastic corrections required to account for the flexibility influences of all
modes not included in the equations of moLion are discussed, and a rigorous
method for applying these corrections is presented.
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[R] Aerodynamic matrix with elements Rij

s laplace transform variable (1/sec)

sec Second(s)
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L Time (sec)

T Kinetic energy of system (ft-lb)

Tk I/Tk is the position of the zero associated with k (1/sec)

U Potential energy of systcm (ft-lb)
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[w] Transformation matrix whereby h is transformed to w and all other modal
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[X] [V] [y] -I [b]T
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8 Control surface deflection (rad)

aij Kronecker delta (6ij = 0, i / J; bij = I, i = J)

& Denotes finite increment in quantity

6 Transfer function denominator

t Damping ratio

tke Damping ratio of the kth coupled elastic mode

tr Effective structural damping ratio of the rth mode

e Rigid-body rotation (rad)

01 Rotation of elastic fuselage at point i (rad)

gr Generalized coordinate or displacement of the rth mode (ft)
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92 Generalized coordinate of the second mode, e (rad)

p Air density (slugs/ft5 )

qir Translation of ith point in rtb normal mode (ft)
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" Approximately quai to
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>> Much greater than

r Smination
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j Matrix

Diagonal matrix

[ J Row matrix

I Column matrix

]T Transpose

[]-I Inverse

( )' Prime denotes differentiation with respect to fuselage station

Subscripts

a Aerodynamic force

a Acceleration deflections

f Associated with modes of nonzero frequency which are of interest

g Grounded coordinates

ke Associated with kth elastic mode

m Movable coordinates
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rot Rotation

sp Short period
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SLCTION I

INTRODUCTION

A. GENERAL

The high-speed capabilities of modern airplanes depend on (among other things)

the use of extremely low thickness ratios for lifting surfaces and on very high

fineness ratios for bodies. Coupled with desired payload and range capabilities,

which impose natural restrictions on weight, this dependence leads to fairly

flexible structures and relatively low frequencies for the structural oscillatory

modes. For certain flight conditions, these modes tend to couple with the rigid-

body, short-period motions; in some cases, this tendency is greatly exaggerated

by the action of the autopilot. The danger of such autopilot-flexible airframe

coupling generally increases as the structure is lightened to reflect reduced

stiffness requirements. In such cases, the incipient airframe-autopilot instabil-

iLy must be checked by analyses which may require, in addition to the normal

rigid-body modes, consideration of

1=, as many as the first three or four coupled normal ("free-free")
modes, which, in general, comprise fuselage, wing, and tail
deflections

2. structural damping effects, usually included as an equivalent
viscous damping

3. contributions of the structural modes to the sensor output

4. control system nonlinearities and more detailed treatment of
control system dynamics than necessary for rigi situations

5. nonstationary aerodynamic effects.

Regardless of its complexity, the closed-loop system must be stable for each

of the flight regimes to be encountered. Additionally, it must accept the

required guidancc in ) : ,Z 'ui .:-F^ with unkcoired inputs, such as atmospheric

turbulence and noise generated by the airframe-autopilt sy +aM itseI", and must

not exceed structural or other limits, Preferably, this is to be accomplished

with a simple control system.

Manuscript released by the authors April 1962 for publication as an ASD
S-Tn IDoR62 entar2 79por.
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Ad hoc solutions to the problem posed above have been obtainee by increasingly

complex multidegree-of-freedom analyses which involve the use of large computer

facilities. Such analyses provide little in. .tit into the physics of the problem;

consequently, interpretation of the results to obtain more than a yes-no answer

and an extension %f the findings to slightly modified situations is difficult.

Furthermore, there is little carry-over from system to system, so that, for

examp.le, the number and types of basic degrees of freedom required to yield the

critical situation for a inew design cannot readily be assessed a priori. The

design process suffers accordingly. Not only is an undesirably long time required

to select (and perhaps later modify) the pertinent degrees of freedom, and to set

up and run the problem, but also modifications required to cure discovared problem

areas are difficult to explain to a design group affected or to management. For

these reasons, it is desirable to obtain simple literal approximations to the

airframe transfer function factors. Such approximations relating the important

poles and zeros directly to simple functions of aerodynamic, elastic, and inertial

properties can provide an invaluable design guide.

This report presents the results of a 1-year study devoted to the analytical

approximation of flexible airframe transfer functions. In this study, three

classes of vehicles were represented by typical configurations, and the influence

of elastic modes on the longitudinal transfer functions was examined (the three

configurations were also subjected to a parallel study, Ref. 1, which yielded

the basic information, i.e., mode shapes, etc., used in this study). Each of

the configurations is shown to possess transfer ftnction factors which can be

simply approximated by a few major terms when interest is confined to only the

first two elastic modes. (The results of Ref. I show that additional higher-

frequency modes do not appreciably affect the two-elastic-mode transfer function

in the frequency range that is important for flight control analysis.)

The first configuration studied (Configuratio .. 2) is a missile-like vehicle

with canard control, capable of supersonic speeds at low altitudes. Configura-

tion 3 is a swept-wing, high-aspect-ratio arrangement, while Configuiation 4 is

a supersonic A lta-wing vehicle. All three configurations are described in

detail in Appenlix C.
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B. OUTLINK OF THE REPORT

The r eport !,s div-1ded into five sections I .lowed by four appendices. Most

of the analytical work is presented in Sections II through IV, while the numeri-

cal data are Ancluded in the appendices.

Section II presents a derivation of the equations which are used to form the

transfer functions. The static aeroelastic effect of the truncated high-f'requency

modes on the aerodynamic inputs is discussed and the method of inc.usion is shown.

The derivation of the matrix required in this method is presented in Appendix A.

The transfer function factored forms are presented in Section III, along with

the approximation formulas for the three configurations studied. All of these

approximations were derived by one of -the methods presented in Appendix B.

Section IV discusses the problem of sensor location for closed-loop operation.

The effect of sensor location on a particular configuratio; is shown, and a method

for "optimum" placement is suggested. ("Optimum" here implies that the effect of

the elastic modes is minimized with respect to the rigid-body pitch degree of

freedom.)

As noted, Appendix A presents a derivation of a proper method of accounting

for the elastic modes not included in the equations. This method was derived in

Ref. 1, and Appendix A parallels that presentation. An example is included which

utilizes the method, and shows the exactness of the results obtained.

Appendix B presents the several methods that were used to derive the transfer

function approximation formulas of Section III. No one method could be found

which consistently produced the simplest approximations; hence, the approximations

were derived by the best of those in Appendix B for the case at hand.

A detailed destription of the configurations studied is presented in Appendix C,

along with -the normal wode shapes used.

The numerical equations of motion for each configuration are included in

Appendix D, as are the exact transfer functions that these equations yielded.

The equations and the transfer functions were calculated by a digital computer

according to the equations outlined in Section II. The transfer functions

o~'t r-v,!-h the arjpr xjmat,, forulao of Scction III arc also presented in



Appendix D as an indication of their accuracy. All of these data are presented

for a range of dynamic pressures for each configuration with one and two elastic

modes included.



SECTION II

EQUATIONS OF MOTION

The equations will first be derived in terms of the physical coordinates of
the airframe, and will Lhen be converted to modal coordinates to allow a reduc-

tion in degrees of freedom and coupling terms by the use of orthogonal modes.

The high-frequency modes will then be eliminated and the equations reduced to a

set involving a limited number of flexible modes. Detailed consideration of the

anrodynamic forces will then give the form of various coefficients involved in

%.he final equations of motion.

A. GENERAL EQUATIONS OF MOTION

The methods for the development of expressions for the inertial and elastic

forces on-a flexible airframe differ, depending on whether the inertial and

external loadings are considered to be distributed or concentrated. If they are

considered to be concentrated at a finite number of points, then the displacement

of any point, qi, can -be written

qi = C CijQj (i)
J=1

where qi ir the -physical displacement (which may be either a translation

or a rotation) at the ith poinr

Cij is the flexibility influence coefficient giv.:,6 the 1hycsical
displacement at the ith point caused by a unit physical forcc
(i.e., a forie or a-moment) at the jth point

Qj Is the physical force applied at the jth point

A force and a moment c-n -:'oUplei simultaneously at any given location merely

by making two of the n points of application coincident; e.g.-, th- first and

second of the n points will be the same if QI is a force applied at some locatic.,

and Q is a moment applied at the same location.

The physical elastic force at point i due to any arbitrary set of physical

displacemeats, qj, can be expressed as

IL



n
Q = - kjjqj (:)

J=1

where kij is a stiffness influence coefficient. For any J (e.g., j = r), the

set of kir's is equal to the set of forces, Q1, required to make qr = I and

qi = 0 for i r.

If the distributed air loads over the airframe are considered to act as a set

of concentrated forces, the sum of the elastic and aerodynamic forces at the ith

mass may be equated to the inertial force at that point, yielding (neglecting
structural damping)

d2 qi
m d- =- Qi + Qi (3)

where mi is the physical mass at the ith point

Qai is the physical aerodynamic force at the ith point

The aerodynamic force may be considered to be generated by the displacement of a

finite number of physical coordinates on the airframe.

n

i E Rijqj (I)
J=1

where Rij is the physical aerodynamic force at point i ceused
by a un-,t movement of point J. Rij will generally
be a polynomial in the differential operator (or
Laplace variable), s

Using matrix nott!.Acn, it Is uossible to wr..te 2q 2 and 4 as

jQ4 = -[M jqj 5

and

= [R]{qj (6)

6



Equation 3 now becomes

[ms2j q| = -M ' [R]Jqj (7)

It '.s customary to combine the elastic and inerLiul forces because these do not

vary with dynamic pressure:

[ms2 + kq = [R]q (8)

If movement of the control surfaces, while introducing aerodynamic forces into

the system, does not introduce significant inertial or elastic force, it is

reasonable to separate control surface deflections from the rigid-body and elastic

deflections, and to write Eq 8 as

[ms 2 + k]ql = [R]lq +1Qin1 (9)

where Qin is the physical aerodynamic force input causeC. by the move-
ment of control surfaces. Gust loads, nonuniform wind
conditions, etc., will create forces which can also be
included in the Qin term

Equation 9, when expanded, appears as folluws.

mls 2q1 + k11 q1 + k12q2 + -" + k1nqn = 111 + R12 q2 + + "Inqn + Qin I

mos2 q 2 + k21 ql + k22 q2 + -'' + k2nqn = R2 1q2 + R22 q2 + +"" + R2nqn Qin2

• (10)

mnlSqn + l',jqj + kn2q2 + "" + knnqn = Rnlql + R"2 q2 + "'" + %nn +

Equat ons 10, then, are the equations of motion (iV crturhation. 2rom a

trimmed condition) for a flexible airframe represented by n aontrol points (see

Fig. I). The degree of accuracy employed in the construction of the [R] matrix,

and the number and locaLion of discrete mass points chosen, will determine the

adequacy of these equations in representing the actual system. Because a great

nun::er c r qj 's !- s lly J.red for an adequate representation of a



S  Q3 Q4  n-2 Qn-1

__- --------- Reference line

m2  m3 m4M1 n

q, q2  q3 %-2 %-3 %-4

Povitive rotaC.j'_n
- PFositive displacement

Figure 1. Flexible Airframe Represented by n Control Points

continuous airframe with a continuous loading, it is impractical to work directly

with Eq 10 to achieve simple approximate methods. As an equation-reducing

alternative, airframe motion is often represenLed by a few normal modes; then,

each of the qj's consists of the superposition of the motion of the modal coordi-

nates; i.e.,

nqi -- E OijFj(t) 011
j=1

Defining 0(

ij =  (12 )
ijrei

Then, n

i (JtiJrfJ() (13)
J=I

Defining
4) = @Jref F i(t) (i4)

Then,

n
qi 2 (1 5)

j=1

where qi is the physical displacement at the ith point on the airframe

0 is the physical displacement of the ith point caused by a
unit generalized displacement of the jth normal mode

Tij is the physical normalized displacement at the ith point
caused by a unit generalized deflection of the jth normal
mode. The colleetion of all the W jj's for any given J
rP;p-eseuus thze , shape for The jth normal mode.

8



is the generalized dibplane,-.nt or coordinate of the jth
normal mode; i.e., 'j is a scale factor for the jth normal
mode, &.ven by the normalized physical displacement (result-

ing from deflection of the jth normal mode, and no other) of

a preselected point on the ai,- ne.

Thus, q1= 1 + 1292 + '' + T1ngn

q2  T2 1 1 + 92292 + ' + T2ntn

(16)

qn = nItI + n2t2 + - + Tnntn

This may be written in matrix form as

{q} =(17)

Henceforth, [0] will be referred to as the modal matrix. A typical graphical

presentation of Eq 16 is given in Fig. 2.

The n columns of' [], i.e., the mode shapes, are found by assuming simple

harmonic motion (s = Jw) and substituting Eq 17 into Eq 9,

k= {O (18)

which can also be written

[k] 1 } - m= 0 (19)

[hi' k if= 0 (20)

The form of Eq 21 makes it clear that the 2's are igenvalues of [m'[k], and

the 'i's are the associated eigenvectors.

For any two linearly independent eigenvectors, it is possible to write

(Eq 20)
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Firt Mode
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Ninth Mode
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[k I TIM (P.I (22)

[k] 1Pb14 1 Pb (25)

When both sides of Eq 22 are transposed,

Laj [k] T  L L(aJ [ T

Therefore, Li~k TIJ = j .]T T bj

But [k] and [ are symmetric, whereby

Now, premultiplying both sides of Eq 23 by A I

L= Lk]IiP = 4L mI T1 (25)

A comparison of Eq 24 and 25 yields

1NJ % = 4L Mal M Icp

or

or - I )L IJNmh = o (26)

If 4 and 4 are distinct, then

WT[] b = 0 (27)

Spetion 1.21 of -Ref. 5 considers the case where w2 a,. 2 re nt disti.r.t, and

shows that Eq 27 above still holds. Since the implication of Eq 27 is that all

off-diagonal terms are zero, then for orthogonal modes

T= [M] (28)

11



where [ must be diagonal. It can similarly be shown that

[L] T k] [.] = [K] (29)

where [K must be diagonal.

The significance of Eq 28 and 29 is that Eq 9, comfie:d with Eq 17, can be

premultiplifed by to obtain

[D]T[me2 + k][]]T 1 g= I + [D]TIQin (30)

where []T[ms2 + k] [D] will be diagonal. Therefore, defining

EMs 2 + K] = [D]4[ms2 + k] [.D]

[Fg] (-= []T)[R] [)] 00

In - [,] T in1

allows Eq 30 to take the simple form

EMS 2 + KJ1 = [ 1 + l~inl (32)

where [M] represents the generalized mares matrix in generalized
coordinates

[K] represents the generalized stiffness matrix in generalized
coordinates

41} is a column of generalized coordinates (which a..' orthogonal
coordinates when [Fg] = O)

[Ft] represents, in generalized coordinates, the externally
applied forces per unit deflections in I (and unit
velocities in M , etc.)

The left side of Eq 32 rcpreents the structural dyz, amice of the vehicle in

vacuum (negl.ncting structural damping), while the right side represents externally

applied forces. When expanded, the left side will appear as

12



M2(s2 + 4)t2

As is normal, tI and t2 will be used to represent rigid-body translation and

rotation, respectively. Thus,

M = m, the total physical mass of the system

M2  = ly, the total physical pitch inertia of the system

j= h (positive down) (33)

92 =e (positive nose up)

= a 2 = 0 (no structural stiffness in 91 or 92)

The appearance of h is not in keeping with the normal aircraft stability and

control formulation of the equations of motion. Therefore, it is desirable to

transform Eq 32 so that h is replaced by w. Such a transformaLion is roprcccnt-

able by the matrix M, where W] is defined by

e e
93 !3

_v U". ,h c'e th:-- mat :ix I[ei can be found rather easily by using the expression

13



relating v to h and e for the assumed unperturbed corition, 70 =0.

Flight Uo

path

w = Uo sin e+h cos o

Figure 3. Derivation ofi the MW] Matrix

Thus,

and the desired transformation matrix is

-uo1 - 0 0 0

0 1 0 0 0

0 0 1 0 (

0 0 0 1 . 4
-0 0 0 0 . . . I-

Using the transform. ,jc: matix deij,.a.d zy - ., nnd for convenience defining

[yN = CMs 2 + (36)

Eq 32 becomes

[Y][wl} = [Ft][w]l + Vint;

14



where J, is now w/s rather than h. It can be shown that FY1{W] is not a diagonal

matrix. It is therefore desirable to redefine [Ft] WJ to include the off-diagonal

term from [Y [wM, thus giving a diagonal form. to [Y) W). This can be done by

writing out the Y] W] matrix,

ms2  -Uoms 0 0

O IyS2  0 . 0

0 0 M3(s 2 +0) o[yl] M (.8)

O 0 0 . C 2  ) ,

and redefining [Fe) [W so that it includes the -Uoms term that appears in Eq 38.
This will restore [Y] W) to its original diagonal form.

B. ELIMINATION OF THE HIGH-FREQUENCY MODES

At this point the set of simultaneous relationships given by Eq 37 is capable

of yielding results which increase in "exactness" with the number of modes con-

sidered. Since engineering interest is inevitably confined to a limited band-

width, the importance of including higher frequency modes "'c measured by their

effects in this bandwidth. For example, if all elastic modes are considered to

lie outside the frequency region of concern and all are excluded from the equa-

tions, then the resulting solution yields only the conventional rigid-body

short-period motions. But at appreciable dynamic pressures this is a gross over-

simplification, becau.c cho ex3odec _ictui'al idc. give rise then to at least

an aeroelastic correction on the rigid-body stability exlvuLvcs. Sucn correc-

tions can be and usually are made by considering only the static deflection

properties of the structure. In this instance, the effects of all possible

elastic modes have been approximated, for the frequency region of interest, by

considering only static deflection characteristics. When the bandwidth of interest

in-lude- n u'zz of io'-frA. '.. structural modes, the question arises as to

1c5



the proper aeroelastic correction whereby to approximate the influence of ths

neglected modes. Clcarly, now the use of the "full" aeroelastic correction will

be incorrect since the modes included in the equations of motion must somehow

alter the approximated contribution of all remaining modes. The proper treatment

of the neglected higher-frequency modes first studied in Ref. 1 will now be

outlined.

If Eq 32 is partitioned into those coordinates which are of interest (denoted

to+f, where o+f stands for zero frequency + finite frequency), and into those of

higher frequency which are not of direct interest (denoted as to), then the

latter can be eliminated from the equations. This is accomplished as follows:

Using Eq 31 and 36, Eq 32 is rewritten as

-Y)IV } [ ]T[R][I)I + (gT' Qin1 (39)

where the transformation from = h to g, = w/s has not yet been made. Then,

partitioning the matrices,

rYO[1Of._ 0co + -? Ko(4o

and expanding the right side

0 I I~ ~~ +f]f T [~O i1 R] (-+±
[ 0 o ... RRo]] 9'+ + L [ i

J1 )0+ *.i I

Ic 90o0' TR) +] 9c6f]R 4~3LV. +: f] [] o 0+ f]!'J . + T r j 'I LO

T [TE R~ E ] [ o ]T [ R [ j g o I L TJO

16



Equation 41 is equivalent to the two f'multaneous matrix equations,

[yo+Ig~o +f I =[Do +f1TER] [D jo+f Io+ + [EVo+f]T[RJR[bWC,]ItrnI + ED,]TI Qi (4~2)

and

Y[rycgoo =  [,oo]T[R][o+f]jgo+f] + [oo]T[R][EjjOOMI + ED oo]TIQInI (43)

Equation 43 can be solved for Ito.I, which can then be substituted into Eq 42.
This will result in equations of motion for the modal coordinates of interest.

Thus, multiplying Eq 43 by [YoD] -1 and solving for { oo

= [I) - o]- I [ [ -1o] Eyoo] "1 [o]T[R] [+f]go+f

+ [[I] - [OO]-I [%0]T[R-LJ] -I -I

(44)
and using this result in Eq 42,

[Yo+fJfo+fl []T[] o f

+ [Ro+f]T[R] [4cO [[I]] Y.) -1  T[][0] ['oiJ LYco'1 o[R]FPJI t.o+f1Io+f

+ [o+f]T[R] [ [j] - - o]'l 1 [1 I

"y.]-jT 0 l T  IM.n} (45)

Because

[[D] (B) + [D] [ =] [[B) + [Cj]' [D] "1

[[D][B] + [CI[B]] = [B]I[[D] + [C]]

17



Then [[I] - TR ~o] 1 -

= Rpo I YCl- £RJ Eoc]] -1

= yrl]-O T[[I] - [] [yj-) [%,,T] -1 (46)

Using this result, Eq 145 is modified to

+ [00f T [ii ] j1[ojf[I] - []j[[~]~ 4

+ 1'D]fTN R1OCIC'OT[I] - [R]EOJ~ OJ11 Ti JQin1

+ 1Oo+fIIQinI

and collecting terms,

EY +fj tt+d - = [.D~fT

x[[j] + [RE (.D. Ey1 O.T[[I] _ [RJCo.] [ $.],p]T]]

x [CR)EI(o+f I t o+f I + I Qin 1] (47)

To simplify this further, use the following identity:

[I] + [B][j - '] I B[[I]- [B]] [[I] [B]] + [[I

Er - - [ b r LLr] [ M]-

[I] [I] + [[]- [B]

[[I] [B]]

= 18



whereby Eq 47 reduces to

[000] T48)
lf+f Ito+f I = [-Do +fJ] [1,3 - ER] I.M [YOO] 11] E][~f ~+

Now, define [A] [[I] - [R] [D.o] [.]- 1Do] T] (49)

Equation 48 then becomes

ryo+A lto+f I = [.o+f]T[A] [R] [00+f] f o+f I + [O+f]T[A] IQ, (50)

Equation 50 is seen to be very similar to Eq 39. However, in Eq 50, the

coijmns of modal coordinates contain only those coordinates which are of interest;

therefore, this equation represents a fewer number of sim ltaneous differential

equations to be solved. (In essence, the last r equations have been used to

eliminate the last r varixbles from the set of n simultaneou3 equations.) Also,

a new term appears in Eq 50 which was not found in Eq 39; this term is the [A]

matrix. It represents the modifications which must be made in the first n-r

equations to include the effects of the higher-frequency modes. The [A] matrix

thus represents an aeroelastic correction factor to the system. It will theoreti-

cally account exactly for all influences of the higher-frequency modes. However,

the exact calculation of [A] requires all the information contaLned in a complete

set of n equations and involves an unwieldy inversion of a =-_trix containing

terms in s and s2 (see Eq 49). At the frequencies of interest, w, which are

always much smaller than the higher mode eigenvalues, ak, by definition, the

s and 2 terms, relative to the stiffness term, are proportional to w/4 and
(0/ak)2, respectively; thus they can be neglected. Even then, calculation of

[A] from Eq 49 would ;-jqurc; _. .jed_ 2 the hi u ~r-.frequency mode shapes.

Fortunately, however, by neglecting the s and s2 rrers, Tuer - making [A] a

quasi-static correction factor, it is possible (Ref. 1) to calculate the quantity

from a knowledge of only the rtatic deflection charactcr t. CS of the sbLtm.

Th': det in % this cale-U..lLon are given in Appendix A.
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C. AERODYNAMIC FORCES

So far, no mention has been made of methods whereby the [R], [y, and 101

matrices may be calculated. Although the latter two are not necessarily simple

to form, they will not be discussed because of extensive treatments in the

literature (e.g., R- ". 3 and 4). The same might be said for the aerodynamic

matrix, [R], except for a significant major difference. While the [Y] and [0]

matrices may be derived in many ways, the results (for a given physical situation)

will always be the same; this is not true of the [R] matrix, which depends

inherently on the assumptions mnde as to the origin of aerudtynamic forces.

For purposes of the present study, a very complete formulation of [R] is

deemed unnecessary, because it can only affect certain of the numbers appearing

in -the equations of motion. 6ince these numbers are requircd to be only repre-

sentative of the configurations involved, the aerodynamic matrix will be r.bii",ed

to -a very simple form. That is, almost all secondary aerody?,amic and elastic

effects (e.g., wing-body interference, unsteady aerodynamics, chordwise bending)

will be neglected; and the air forces and moments will be represented by average

derivatives associated with each lifting surface, or suitable portions thereof.

Accordingly, the center of pressure (c.p.) for lift is assumed to be at a fixed

fraction of the MAC for the surface or portion thereof (0.5 for Configurations 2

and 4 and 0.25 for Configuration 3)-; no downwash effects are considered on

Configurations 2 and 4; the only (pure) moment is considercd to rcsult from

pitching velocity; and the angle of attack for a section is defined by

= e 34(52)
Uo

where e is the rigid chord rotation

h3/4 is 1,-n. -- % dtsUlacement of the 3/4 chord

The selection of h3/4 to define the section angle of attacy. is in accorfance with

theoretical aerodynamics [where, as a boundary condition, the flow velocities

over the upper and lower surfaces of an airfoil are matched at the trailing edge

(Ref. 6)].

• ,, :'. all this littiG. nore upeclfically to HR], refer to Eq 6 wherc

the t'z are ordered as

20



h3/4 (53)

and the Qts are ordered as

moment

Note that the moment does not require specification of a point of application

because the chord is assumed rigid. Now, partitioning the [R] matrix,a~ b
where, in general,

aij is the Z-force (negative lift) at the c.p. of th3 ith
-erodynamic surface due to unit vertical displacement of
the 3/4 chord of the jth surface

bij is the Z-force (negative lift) at the c.p. of the ith
aerodynamic surface due to unit rigid rotation of the
chord of the jth surface

cij is the -moment on the ith aerodynamic surface due to unit
vertical displacement of the 3/4 chord of the jth surface

dij is the moment on the ith aerodynamic surface dize to unit
rigid rotation of thc chord of the jth surface

The literal expressions for the partitions of [R] are found from the general lift

and moment equations. The Z-force at the c.p. (which for convenience is desig-

nated by the subscript "I/4") of section i is given by (excluding downwash)
LPU02 SGI,) s -h o S. \

-1 2 (3c1 - LpU 0  j (5)

The moment on section i is (excluding downwash)

P (i =6 (-20 (57)Mi 2 2
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Therefore it is possible to write

Li 1  a1 1  0 0 1  0 0

12 0 . 0 b22  0

.0 0 am o 0 b h

-_ - ---------- (58)

I0 0 0 dl,1  0 0 61

M2 0 0 0 0 d2 2  0

Mn  0 0 .. 0 0 0 dnn

where the terms in zl: z-r matrix are those comprising [R] and are given by

aj =  - 2 c 0~ 8ij

b j = - U2T S L i, j (5 9)
cij = 0

22



where bij is thc Kronecker 6 (C = I f or i = J; 8 - 0 for i j J), and the o':her

symbols are standard aerodynamic s)mbols.

The physical coordinates on the right side of Eq 58 can be written

V. 111 (60)

Therefore Eq 54 becomes

Oal = [ .. (61)

and utilizing a compatible partitioning of [O]T, Eq 31 can be expressed as

JFal = [OT, 01T]{I-oc at c*p.' (62)

Therefore,

.Fal = OT (63)

or In the terms desired here,

[Fg] -- /(PT ....

where [-k-1 is the matrix of mode deflections of the k-chord points

[0'] is th ma.zi:x -nod. tl p of -r.: rigid aerodynamic chords,
i.e., cpr = (d/dx)(pr, which is constan along a rJ1id chord

Expanding Eq 64 for the zero downwash case yields

[Fg = 1T[a]l + [q114]T[b][, ' ] + [.D']T[d][,J ("'

23



The ijth element of the [Fg] is round by adding tha ijth elements from each of

the three components.

I4'1/4 j TaJ ['P/ J = (k 3s/4) J (67)

k k Uo N 1/41Tk1

(b] [0'] = -q(sctji i (67)

[$I/0 T [b] [']ij = -kq(SC ) k (69)

[0'] = q(s 2 Cm6)i (70)

.D,] T [d] ED] i j _ q' (71)
k (SSCbk

Thus,

(72)

° [([SCIn] O - (C nJ) S + Uo(Si4n 1 4 i i]n

where the summation is over the n aerodynamic surfaces.

For situations involving downwash, Ftij includes terms involving off-diagonal

elements of aij and bij (Eq 55). These added terms are shown in one version

the f.nal equations of motion, Eq 73.

D. FINAL EQUATIONS OF MOTION

With all the important elements now in hand, the final desired equations of

motion can be formulated. To achieve a form consistent with aeronautical

stability and control usage requires application of the 1W! transformation

?-trix (Eq 54 and 35), -eauCrrng all aerodynamic terms, except inputs, to te
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left side, and nondimensionalizing by dividing each equation by the appro]?riate

inertial quantity. Note that the mode shapes are normalized so that the general-

ized mass for each elastic mode is unity. Doing this for the case where only

two flexible modes are included, and where downwash from the first aerodynamic

surface affects the angle of attack of the fourth aerodynamic surface, reaults

in Eq 73, whici utilizes the following identities:

nkl = 1 rigid-body translation imparts equal translation
kl to all aerodynamic surfaces

1 = 0 rigid-body translation imparts no rotation to
aerodynamic surfaces

Pnk2 ink rigid-body rotation imparts translation propor-
tional to the distance from the center of rotation
(Ink is the distance from the airframe center of
gravity to the k-chord of the nth aerodynamic
surface, positive aft)

Wn2 I rigid-body rotation imparts equal rotation to all
aerodynamic surfaces

It should be noted that no aeroelastic correction, [], has yet been applied

to Eq 73 and that to do so, in literal terms, would be a l ractical impossibility.

Equation 73 is thus mainly illustrative of the form assumed by the various coeffi-

cients, which in an actuaL case would be modified by varying aeroelastic correc-

tion factors. By assigning a symbol (i.e., a stability derivative) to each of

the terms (including the aeroelastic correction), Eq 73 can be simplified and

extended to the general situation where an arbitrary number of flexible degrees

of freedom are included, as in Eq 74, the final set of . ioations of motion.
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SECTION III

FLEXIBLE AIRFRAME APPROXIMATE TRANSFER FUNCTIONS

The forms for the longitudinal transfer functions of a rigid airframe are

well understood, and a summary of these forms may be found in Ref. 2. The addi-

tion of flexible degrees of freedom to a system has generally been treated to a

lesser degree, but the forms for the transfer functions are nonetheless also

well established. In general, the addition of each flexible mode will result

in the addition of a pair of lightly damped roots to the numerator and denomi-

nator of each transfer function. Table I summarizes the forms expected for

situations where two, one, or no elastic degrees of freedom are included in the

equations, and forward speed is assumed constant.

In the current study, each of the transfer fun,.-tion factors shown in Table I

was approximated by a limited number of terms involving directly the stability

derivatives appearing in the equations of motion (Eq 74). T'ese direct relation-

ships allow the effects of parameter changes to be predicted with a reasonable

degree of confidence without actually recalculating the transfer function.

A. DISCUSSION OF METHODS OF DERIVATION

Basically, the derivation of approximate transfer function factors involves

determining the terms which are important for each airframe configuration non-

sidered. This is done by substituting a typical set of numerical values for

speed, altitude, etc., into the equations, and then neglccti.-, the small terms.

In doing this, it is assumed implicitly that moderate changes iin the parameters

will not affect the segregation of small and large terms; that is, small terms

remain small over a reasonable range of parameter variation. An exception to

this was found in Configuration 4, where control reversal was noted for dynamic

pressures of 20 p, i.

Appendix B contains detailed descriptions of the tw" -tbods ;hl:h wc-t.- used

to determine literal approximate factors for each of the configurations consid-

ered in the current study. Although the description of the first method con-

siders the case of factoring a transfer function denominator, the technique used

may be applied to numerators as we:ll.
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TABLE I

SUMMARY OF TRANSFER FUNCTION FACTORED FORMS

RIGID AIRIvME FIRST ELASTIC MODE SECOND ELASTIC MODEI I

I IA ++ 2Dsp + a)si] [s + (2 to) 1 es [s'~i 2 + (2tw) 2es +4]

I I

-II
Nw  IVs [ + (2tw)s i + s2 +(2)wS +

I ~I

I 1I

No A ~~~I~,E+ (2w)e~ls + 4e, S Ip*es+(e

l+ +s E+

I i~Atj~~32 +(2to)ss~-

NO~I A41 s + a +(2)el +4

[2 

-/%Ws.+
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B. APPROXIMATE FACTORS

The approximate factors for the denominator and numerators for each of the

three configurations are presented in Tables II through VII. Inspection of

these tables reveals that the transfer function factors for flexible airframes

contain the rigid airframe factors d.-rived in Her. 2 (with aeroelastic correc-

tions) along with tne elastic-mode factors. It is noted that the literal

factors for Configurations 2 and 3 are quite similar, and in some cases, are

actually identical. The results for Configuration 4, however, are quite

different.

Rather than including a list of validity conditions for each set of factors,

it is suggested that the applicability of the approximations be determined by

finding the exact numerical factors for a nominal case, and comparing them with

the numbers obtained by using the approximate formulas. The reason for suggest-

ing this approach is quite simple: the alternative of calculating the required

validity conditions (those in Appendix B are just the start) would be unreason-

ably lengthy and complicated. It is therefore impractical and unnecessary to

present a list of validity conditions. The justification for the method suggested

lies in the assumption that moderate changes in parameters from the nominal values

will not affect the segregation of large and small terms (except for Configura-

tion 4).

C. ADEQUACY OF ONE- AND TWO-ELASTIC-MODE REPRESENTATIONS

Regardless of the validity of the approximations, there i.2 vtill a basic

question as to the number of modes required to adequately represent the system(s)

under study. This subject was investigated in Ref. I for the three cases treated

here and the results of this investigation are summarized below.

Configurations 2 - 7 '-oe shown to be accurately represented with only one

or two flexible modes, the frequency response curv- being accurate fas determined

by comparison with a five-elastic-mode case) up to the characteristic frequency

of the last flexible mode included. However, Configuration 4 was shown to require

considerably more flexible modes for an accurate representation. In an effort to

obtain some usable data, Configuration 4 was invcstigated at several conditions

%'" reo,,i:ed dynmilc pregsures lc,"r than those studied in Ref. I . These lover

press rer; °ceiA .o min.f.ize the dynamic effects of the higher-frequency modes, as

indicated by the small changes which occurred in zh' exact factors for tue
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TABLE II
TRANiSFER FUNCTrION APPROXIMAL~E FACTORS

CONFIGURATION 2
3 MODES

2t A -%w-m - - NM3 F 

M~FA

4e I(og- F% 3+ - um 3 q
(a- Ft+ ) m

l e 3F 3 + M01 F t

-F 3 -

3w - 3 t

(2 twJwl -F,~+~~ + - Lb ) M6

Ae

Ye M8 F3 3)- M45

Ne w2 Fw

+3 +~ mw + F

+ - Fr-)(Z + Mg

N ~ ~ ~ A F3 r 0 ~~
.3 

M

(2.)~ .Zw -Mq + F3q F
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TABLE III
TRANSFR FUNCTION APPROXIMATE FACTORS

CONFIGURATION 3
3 MODES

a~p I UoMw + zwk 4 ( 2

(2(a) - F.(UM , + z OM,)

( - F %3)

2.e _W3-Ft otF'

+ 0 + ~ )+UM

e2 t - Z + F ,jUA3+

Nw 3t + Mg F~)

z FF,

13 M3 o -N 8

-zwjq~ + MW,
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TABLE IV

TRANISFER FUNCTION APPROXIMATE FACT~ORS
CONFIGURATION- 4

3 MODES

4 - 2[O- - 301 + [uOi~~,,. /

(2twOsp I Z - Mq

cife ~ ~uoi~ a~, -Fu~t]1/

(2tw)h

(2~w) &3 r.~ + r + M 3 -

I _ T _ __ _ _ __ _ _

.+ M F 3

(2~el H ~ - FFN3) ++t r

(2 t,)~7 el FMq M
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TABLE V

TRAN:SFER FUNCTION APPROXIMATE FACTORS
CONFIGURATION 2

4 MODES

~~F3 + Uo5F N UM 4 )~~

-(2tw).sp ~M -v-M F3g

F5  F%) + U0M K F

(a~i - Ft) + um

(22

(u) 2 -F~ [j4
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TABLE V CONCLUDED

1  F,8 z

TOP) -t + +( F36+ Me)M, 8

-[w F3, 
+

5
)g+

0 1 + m 3 8 b

,gN 
F z

uQ[F-7-t +4 Mt,4

~ ZM+ F3q+F3jW +M-

(2tw) el -F4i3+ 1% +F4"3 ]

_______) _ 4_14 + M4
Ma Fy

Ag F.)

3 25



TABLE VI

TRAN~SFER FUNCTION APPROXI MAT E FACTORS
CONFIGURATION 3

4f mooEs

2 _Uo~w + Zw&4q -U~

(g- F 5t3)

(2t~sp -Z - Mq- F~(UMj 3 + z2) MVF4q

M3~ - FN,3) 8- N

2 Mt4(UOF~w + FltqF0)

(2tw)e -F~i + -,UoI- + - )+ ~J
(4 NO)

4 (4- F 5t )-(u -F) -

(2tw)2 --P4+14~
3  k

F 
F4(a F0 F4 t4) F4 tF 4 .
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"'ABLE VI CONCUDED

1M 
__ 

_

2 1 ( a -3,) 
'S3 M

NJF 45

Na(2 ) 0  
-F, + Z94 F ) ] W39 4

(Z22 (~ 4 .
rN ~ -4

(2~w~e+g 4)/ + M 4 1  -b F4~

+ [% - 1 FF4)

r2 +FN +UoF M6 4  14
A~4 -t3 JM +3F [-F -(,) 

94)]Fq~

2 UOWF3 4 * g,
't~lF~ t) F 8 UOFF w + M3

(ciO' 
- &~ + ~ F t

__________3___ 
8_______NO_____3__



TABLE VII

TRANSFER FUNCTION APPROXIMATE FACTORS
CONFIGURATION 4

4 MODES

w sp (a-F + [(" F4t4)  U11/2

-)sp - Fz )
11/24e" -g(aj- ,) - [8-F40-°o ,W

A (2ta)1 e IA Zw - F 3.i3 - F4j 4

• 1 Ft) + - F4,)-

(2 to))2e -zw -

1 UoM8

. 3 6 M t 4 3 6 -
2 3 - r)+ Mt -t F F4 M 3  F ]

-F 1 4 ) F3

(2N)w I  Approximation not found

F4 ~ ) r LF 3 14 * F3D

(2F..)w- --Ft .. 5 + 5J
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TABLE VII CONCLUDED

F Z,

41 3tF) + % -b -~ ~ F4 ) 3,

F)

+3 F [ 3 - F4  ( u F ) -) N 3 6

(2 tw) 02 -F31 +MI - 3

-~ 
F35)

2- 0  + F~g [mt mr

~(2w494-F4) F30M3 Th

(2 tai) 2  - 4 iF + UM4 F4

(2~u,) +

AF36 F 8  /

2 93 F~ _! Fj +(F 4 ,, M )

( ta)) Fj - M + (F c + F 5r

2 - "UF
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three- and four-mode transfer functions. The range of dynamic pressures for

which the one- or two-elastic-mode representation is valid (regardless of the

validity of the approximate factors) is thus strongly limited for this one con-

figuration. Care should be exercised if this type of configuration is to be

represented with only a fow of its normal modes.

D. NUMERICAL C014PARISONS OF EXACT AND APPROXIMATE FACTORS

The excellent agreement between the approximate and the exact factors of

Configurations 2 and 3 indicates that the approximation formulas for these

configurations can be expected to remain valid for extreme ranges in dynamic

pressure. However, the approximation formulas for Configuration 4 were not

valid when the dynamic pressure %as extended to 20 psi. Thus, those approxima-

tions should be used cautiously when conditions of high dynamic pressures are

investigated.
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SECTION IV

SINGLE SENSOR CONTROL LOOP SYSTEMS

A. INTRODUCTION

Control uf the longitudinal axis in general implies control of the short
period. Accordingly, the closed-loop bandwidth, or equivalently the open-loop

crossover frequency, must be roughly equal to or greater than the short-period

frequency. When flexibility effects are present such crossovers can sometimes

lead to closed-loop instabilities because of structural "coupling" excited by

the autopilot. Such incipient instabilities can easily be investigated by

Bode analysis, and can in general be avoided.

Since the output quantity fed back to the controller senses all components

of motion, rigid-body as well as elastic (unless filtered), the nature of the

complete open-loop transfer function can often be drastically changed by a change

in sensor location. Thus, whereas for a given sensor location it may be impossible

to cross over near the short-period frequency without appreciable excitation of an

elastic mode, a slight shift in sensor location may permit reasonable closures.

Both the general formulation- of the output quantity as a function of sensor

location and the process of selecting a "proper" location are discussed below,

with specific reference to the use of vertical gyro feedback loops.

B. SENSOR-OUTPUT

If the four-mode pertarbation -equations involve the vertical displacement, h,

the pitch angle, e, and the first two elastic modes, 93 and 94, then the air-
frame transfer functions are h/a, e/a, .3/8, and 94/8. The rigid-body degrees

of freedom ae h and 0, while 93 and 4 represent the first two elastic degrees

of freedom.-

The deflection at any point i along the fuselage reference line will be,

Yi= ci1 h 
+ -Pi2 9 + Pi33 + Ti4g (75)-

'.1, pe, or pitch aazl, measured, for exsunple, by a vertical gyro at any
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point i is found by differentiation:

dxi dqi 2  dx dpix= -- -h+--e+-- g3 - g

p il h + 'i2 0 + T + 9 4 (76)

But for the rigid-body modes, i = 0 C~i (77)
I62 =

Thus, 0 i = 6 + Pi3t3 + i04 (78)

Because the sensor- will detect the total physical motion, the ransfer function

which must be considered is

ei = 0 + I t
-8 (P13 6- + q14 T

Following the transfer function factored forms given in Table I,

0 No

A

4 Nt4

0i NO ,ll 
(8N1Therefore, -i +  + ' - - (81)

For convenience, this can be written 'in a slightly different form:

0= + o 4 T (82)
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The sensed motion is thus the mean centerline motion (0) modified by the

bracketed factor oi Eq 82. The mean centerline transfer function is, itself,

different from the rigid-body transfer function obtained when the elastic modes

are neglected. The difference is apparent from the following equations (cf.

Table I).

Rigid Airfra:

eAs (83)

s 2 + (2w) sps + 0?:

Elastic Airframe (Two Elastic Modes)

e A( (s ) [S + (84)

ss2 + (2tw)sps+asp]fS2+ 2'w)ieS+ e][S2 + (2W2_)2eS+Oe]

The addition of two elastic modes has added two pairs of second-order roots to

-the numerator and denominator of the mean centerline response, e/b. This is in

addition to the elastic inputG which are added to e/8 as shown in Eq 79.

C. CLOSED-LOOP CONSIDERATIONS

Assuming lead equglization of the gyro output (Te. 1 1) and neglecting

actuator and sensor lags, the open-loop transfer function given by Eq 84 yields

a frequency response curve of the form shown in Fig. 4. The-actual curve will

depend on the relative positions and degree of damping of each pair of complex

roots shown. Closing the loop in this case is quite simple, requiring only that

the zero db line inii-'.. "c a2,,ie curve at a frequency in the neighbor-

hood of %p and yet not intersect either of the higber-frequency "peaks." (Servo

lags, unimportant at short period, will reduce the phase margin at higher frcq',-

cies.) Such a closure would be impossible if the e/6 frequency response curve
were of the form shown in Fig. 5 where " e is assumed lower than e01 (and is very

lightly damped). For this latter case, crossover near asp would result in
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If the e/6 response is favorable, as shown in Fig. 4, then the complete ej/B

response can also be made favorable by minimizing the dynamics of the bracketed

term in Eq 82 (via the sensor location). If the 0/6 response is similar to that

shown in Fig. 5, however, then the sensor should be located so the dynamics of

the bracketed term reshape 01/8 to obtain a more desirable form.

D. OPTIMUM SEI;4OR LOCATION

Methods for locating the sensor to achieve desirable results for the two

postulated situations will now be described. In the first case the sum of

PN/N 0 and qPj4  /Ne will be held approximately constant over the frequency

range of interest. Equation 82 shows that under these circumstances $/8 will

be equal to e/5 with a gain charge. In the second- case a sensor location will

be found which makes the combined dynamics of the terms in the brackets of Eq 82

Just cancel the elastic modes found in the mean centerline transfer function,

e/8 (Eq 84).

The example chosen to demonstrate these methods is associated with the high

q condition (1197 psf) for Configuration 3. The transfer functions given in

Eq 82 can be obtained from Appendix D and are repeated below. (Note that the e/5

transfer function will produce a frequency response similar to that shown in

Fig. 4 and therefore is satisfactory.)

No = (s 1 . )I[2 + 2(O.23)(12.8)s + 163][s2 + 2(O.015)(26)s + 673]
Ae ( -3[

N__ - ss2 + 2(0.22)(15.)s + 228[s2 + 2(0.39)(77.2)s + 5987)]

A 93~ +2.1 Es8s
N4 =ss2 + 2(0.17)(5.16)s + 26.7][S2 + 2(0.2)(1.1)s + 172] (85)

Es ..... ] [l -" 22)(12.9)s + 166]

x [s2 + 2(o.081)(29.7)s + 884]

The process of locating the sensor to make the bracketed terms of Eq 82

independent of frequency is simplified by considering an alternate form.

+ ~ 14 111 OJ 1 (86)
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From Eq 86, it is obvious that matheAti cal operations equivalent to closing two

loops will be performed, i.e., c13N3/C14 must be added to 1.0 and the result

must be multiplied by q4piNpj/Ne and added to 1 .0. The solid line in Fig. 6

Rhows th Bode (jw) plot for the amplitude of A4Nt,/AtNE4, and Fig. 7 shows

the Bode (jw) plot for the amplitude of Ao4/A4Ne. When the gain for the

first closure (p A3/(iOA4 ) is chosen, then the curve for 1 +

will resemble that shown by the dashed line in Fig. 6. This is easily seen by

noting that for any transfer function, G,

1 + G G for G>> 1

1 + G 1 for G<< 1

The closed-loop curve (corresponding -to closing the first loop), is therefore

closely approximated by Ti3N93/ i4N94 when that quantity is much greater than

unity (zero db), and by the zero db line when Ti 53N/(j 11 N is much less than

unity. For regions where G 1 , the closed-loop can most conveniently be plotted

using conventional Nichols charts.

Simultaneous inspection of the dashed line of Fig. 6 and the plot in Fig. 7

shows that the two curves have a mirror image resemblance. This is a result

of a judicious closure of the first loop (i.e., properly locating the zero d.

line in Fig. 6). Because these two curves represent quantities which are to be

multiplied (and thus their logarithmic, db, plots are to be added), the product

is seen to bc relatively independent of frequency. 77e ! ey point here is that

ItIe gain of Vhe first closure, wi?3/?'iO 4, was chosen to appropriately locate

the zero db line in Fig. 6. The corresponding appropriate sensor location can

now be determined from Fig. 8, which gives the value of 'iA/4Ag. as a func-

tion of fuselage station. Detailed numerical considerations show that the

sensor should be Ald tation 656 in order to make the value of

k1+ :c i)
relatively independent of frequency. Closing the second loop is now trivial

b-,lust - r.b &.o zon-:t ad." a constant to 1 .0.
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It is noted that the mirror-image effect requires that a zero of Ng;1 /Ne and

a pole of Nt 3/Ng4 occur at the same frequency with the same damping. However,

this is always the case, because the zeros of the former are the poles of the

latter. This method will therefore always theoretically reduce ei/be to approx-

imately 0/6e (when only two elastic modes are considered).

For the second situation postulated, i.e., a e/8 frequency response as shown

in Fig. 5, the dynamics of the elastic modes can be used to better shape the

sensed pitch response. (Note that no such modification is required for the

example picked.) Again, there are two closures involved (see Eq 86), with the

location of the zeros for the second closure dLepending on the gain associatea

w.th the first closure. In turn, the gain is strictly dependent on the sensor

location (mode shapes).

If the zeros resulting from the two closures are to be placed in close

proximity to the elastic roots in A (Eq 85) with-a resulting cancellation, the

following considerations apply; The roots of the first closure will be the

zeros for the second closure; one pair of these will be lightly damped and close

to 13 rad/sec for any value of gain, as may be seen by inspecting Fig. 9. Since

the roots of Ne also include a pair near 13 rad/sec, the final zeros (which-are

the roots of the second closure) will include a lightly damped pair nt approxi-

mately 13 rad/sec (see Fig. 10). This is true because a pole and zerc in close

proximity will always yield a root in that neighborhood for all values of gain

(provided the remaining poles and zeros are relatively far removed, as they- are

in this case). Thus, for the example chosen the elastic poles of A at approxi-

mately 1 3 rad/sec will be cancelled for any sennor posi.tion selected. The

placement of the sensor can thus be made with the intention of producing a pair

of lightly damped zeros at approximately the location of the second elastic

poles of A, 29.7 rad/sec. The second closure has a pair of lightly damped poles

at approximately 26 rad/sec. The locus of the -roots emanating from these poles

must depart in th, z'.. ,n d4"-"t,9d in F.g 10 if the locus is to include the

desired location (29.7 rad/sec) for the zeros. M= ;les of che ec2ond closure

(being the No numerator) are not a function of sensor location; and of the four

zeros resulting from the first closure, two are essentially independent of sensor

location (bhe two lightly damped roots at approximately 13 rad/sec). Thus the

problem is reduced to closing the first loop so that among the resulting xoc?:s
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(which will be zeros fcr the second closure) there will be a complex pair of

zeros which yield the proper second-closure departure from the first-closure

poles at 26 rad/sec. Figurp 10 shows the required location of these zeros

(cross-hatched area). There are two possible ways of producing roots in the

crors-hatched area: the gain of the first closure, ' must be either

positive or an extremely large negative number. The root locus for the first

closure is sh-.m in Fig. 9. If the gain is positive, it must be large enough

to yield roots greater than 29.7 rad/sec. With this information, a number of

positive gains are tried unti the zeros resulting from the first closure fall

in the desired position for the second closure. For the example chosen, the

roots of the first closure need to be driven all the way to the zeros. There-

fore, the sensor should be located at station 647 where the gain of the first

closure -takes on its largest value.

It is unfortunate that, for the example chosen, both methods result in

placing the sensor at a fuselage station where the gain of the first closure,

(i3 /pAt4 is changing quite rapidly. Any departu.e of the mode shapes from

those expected may not result in the required gain and hence not achieve the

desired flat response or the required cancellation of roots. The effects of

such perturbations on the system can easily be estimated by applying the Bode

techniques of Fig. 6 and 7. In-any event, regardless of the validity of the

examples chosen to illustrate the two approaches, the basic considerations

involved are generally applicable to the closed-loop analysis and synthesis of

flight control systems for flexible airframes. It is cspecially pertinent to

note that -a fairly complete set of transfer funcl.ons (1Un-luding those of the

coupled elastic modes themselves) is required for such analjsis and synthesis

activities.
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SECTION V

RECOMMENDATIONS FOR FUM"JRE INVESTIGATIONS

The study leading to tlhe results presented in this report has disclosed, or

has investigated only partially, several potential areas of research, including

the following:

1. the problem of finding the quasi-static aeroelastic correction
for equations of motion which include a few elastic modes

2. the basic mechanics of mode intcraction, and an understanding
of what parameters can best be expected to provide an indicabion
of the degree of coupling present

3. the possibility of representing the motion of an elastic air.-
frame with a simplified set of equations of motion

4. if the transfer function approximate factors are a ianction
of mode shape, what approximations can be made to adequately
approximate the required modes?

5. when and how can the approximations developed in this study
best be utilized?

As indicated by the manipulations outlined and demonstrated in Appendix A,

any physical feeling for the meaning of [xoo] is completely lost in the maze

of relationships involved. This places the method in the category of being

completely unsuited for use in the practical calculation of s-pproximate transfer

function factors. Nevertheless, the basin feeling exists that ii. oie way or

another, [Xco] must ccrrespond to "modificd elastic properties." That is,

the number of elastic modes already included must give rise to a correction

of the basic static deflection properties; and the corrected properties (the

"residual stiffness") -ist in some way be connected. with [Xxo] . These con-

nections have to be formed, and a physically a"Isfyiotg pi.ture mimt be

drawn before the process of obtaining simplified approximations to zhe aero-

elastic corrections can proceed.

The desirability of obtaining such approximate corrections cannot be over-

emphasized. This stems basically from the fact that if proceduxes akin to those

described in Section II are required to establish proper aeroelastic correctiens:
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then much of the impact of approximate transfer functions is lost, because

1. the time and the machine methods required to compute [XcO]
might just as well be used to compute exact transfer functions

2. the basic possible physical insight which approximate transfer
functions can potentially yield will not have been realized.

A second major consideration is the phenomenon of coupling. Better under-

standing of coupling is required, as evidenced by the results presented here

on Configuration 3. In that instance, the equations proved to be weakly coupled,

even though it was expected that strong coupling would be present. The reason

for this is now know.: coupling of two modes is not necessarily indicated by

proximity of their frequencies. This is discussed in Ref. 8.

The equations of motion for flexible vehicles, including two rigid-body and

an arbitrary number of flexible degrees of freedom, arc given in their most

compact form by Eq 74.

The approximate transfer functions derived in this study are a direct in-

dication, for the cases studied, of the relative importance of the various terms

in Eq 74. Unfortunately, as shown in Section III, all terms appear in one or

another of the various factors involved in the complete set of transfer functions.

Accordingly, the specification of the validity conditions for which the approxima-

tions apply becomes exeedingly complicated. Because all the parameters remain

important (depending on the particular root involved), the most efficient way,

currently, of determining the applicability of the approximations is to compute

an "exact" check case. If the approximations are valid a: snown by this com-

parison, they can be applied to gain the desired insight into sources of dif-

ficulty, ef2fects of changes, etc.

An alternative approach to approximate factorization is to write sets oi

"simplified equazioii r." oni'" each set applicable to restricted-frequency

regions (e.g., Ref. 9)-. The sets of simplified equations and "he sets of

approximate factors are complementary ways of specifying the important contri.a-

uting terms; both approaches will theoretically yield similar results for the

approximate transfer functions. Accordingly, the simplified equations can be

used to specify, hopefuly, more tractable validity conditions, and further t-.

S9pproximate transl,;Y functions for other than control inputz (e.g.,

:o, gusts, as in Ref. 9). For these reasons, the simplified equaticns are

highly desirable adjuncts to the approximate t-nnsfer function factors.
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The approximate factors for the transfer functions of a flexible airframe

are given in terms of such quantities as airplane stability derivatives and

mode deflections at various points on t~he airframe. A great many reports and

papers deal with the subject of approximating such parameters, and many of

those concerned with stability derivatives are directly applicable. The same

is -not true of all methuds of estimating mode deflections, most of which are

used only to establish an initial estimate for use in iterating to the exact

value. Because the iteration procedures rapidly converge, the initial estimates

need not be, and are not, very accurate. This is especially true of Galerkin's

iteration method, and the method of Stodola and Vianello, where the iteration is

continued until repeated iterations provide the same answer (Ref. 3). Other

methods, such as Rayleigh-Ritz, modified Rayleigh-Ritz, collocation, and colloca-

tion using station functions (Ref. 3), rely somewhat more heavily on the original

estimate if any accuracy is to be obtained. Thus, many techniques of varying

accuracy (directed at these latter-methods) have been formulatet to provide a

fairly reasonable estimate of the mode shape. Most of these, however, are

usually content with merely satisfying boundary conditions. The 'mportance of

selecting or developing such approximations stems from the fact that fairly large

errors in mode shape may be tolerable for the purpose of computing approximate

transfer function factors. The effect of mode shape error on- the accuracy of

the-approximate transfer functions is easily determined in a given case by

finding the changes in the factors caused by variations in the values of the

mode deflections.

It is desirable to apply the approximate transfer function fo-,ulas (Ref. 5)

to some actual aircraft or missiles to demonstrate their application and utility

on-a tangible basis. Probably the -most significant and useful results can be

obtained for vehicles that are currently in the preliminary design stage. The

information necessary for : z-' !uation of the approximate factors is generally

most -available at that time, and the resulting analyr.s would be usefr,, to the

vehicle manufacturer, inasmuch as some insight would be provided- on the dominant

factors affecting the aircraft modes.

Many of these problems may be resolved in the completion of Contract No.

AF 33(657)-8374 which has recently been awarded specifically for study in these

areas.
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APPENDIX A

AEROELASTIC CORRECTIONS

A method has been derived in Ref. 1 wherein [Xo ] can be calculated. It was

not considered nec:sary to repeat that derivation in this report, but a summary

of thc mjethod and an example of its use follow.

A. EUN MRY OF THE METHOD

To obtain the basic data required in these equations, the system is restrained

at two points, and is then subjected to a unit acceleration field, first in trans-

lation and then in rotation. The resulting physical deflections are partitioned-

in matrix form as

qg trans -
{qa trans. =. (A-)

' q trans I

q rot, = I'' rot (A-2)
qm rot

where the subscripts a, g, and m denote acceleration-deflections, grounded coordi-

nates, and movable coordinates, respectively. These .fLct'cns are used in the

calculation of [Xf +C], where

[Xcol =  [Xf+o ] - [ f]1Yf~s1oH fT (A-3)

In Eq A-3, the columns of L[14A correspond to the finite-frequency mode shapes
(those of interest as mentioned earlier); C represents the diagonal CK + Ms

matrix for the corresponding finite frequency stiffness and mass matrices; and

the elements of [Xf+c, ] are found by calculating partitions of [Xf+a,] as follows:
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NxI ..........r ... ...... o (A-4)

(f+co)mg fco=

[X(f+ OD~ ) mg = qcm trans jj % i rot i] ~ 0 ~ ~

x, _o m],[ M o] [o o] ' ] [x trans, q rot,] [Mo ] [og ]T (A -6)

o[X(f+]0) x] = [X(x)4 ]o Tg" (A-7)

[Xfcom] [.D-[~~[og]1[X(f+oo) gg] [og] T [0 ]T

+ Dg X~+O~m + [Xfc m][o]T ] (A-8)

where Zo] is the influence coefficient matrix uf the i;ysem when restrained at

the two points qg; and where [DOm] and [40g] are found by partitioning the zero-

frequency modal matrix into the elements corresponding to the restrained and

unrestrained coordinates,

[0] = [ *(A-9)

Also, [ is the zero-frequency modal. mass matrix

[m) is the mass matrix of the physical system (defined previously)
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B. EXEMPIABY DEVELOPMENT

The three masses shown in Fig. A-I are rigidly attached to a weightless beam

of length 21:

mI ~m 2 I2  M3

K- 1 1 -

Figure A-1. Mechanical Model

The rotational inertia of the first and third masses in Fig. A-I is negligible,

and the rotational inertia of -the second mass is 12. All deflec-ions are measured

inertially, -and are positive as indicated. The angle 0 is the inertial rotation

of mass two, and is also positive as shown. Mass two is in the center of the beam

which has a constant EI. The -masses are assumed to be equal, m.

With this information, !t will. be possible to write the system equations of

motion utilizing Lagrange's equation:

d /-LN 6L + D(A10

dt k jI -- q Q

where L = T- U

T = the kir.,. -'W , j of 2:: vystem

U = the potential energy of the system

D = the damping energy of the system

Qr = the generalized force on the rth degree of freedom-

qr = the rth degree of freedom

Foilowvng tunse dt.L::iti , (an .rossion for the potential energy for the beams

is derived in Ref. 3),
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2 .1 2 '2 2 ,23 I' 2*2

- 1. (Y, _ Y2 1 le)

2 12

2 13- (Y3 " Y2 . ) 2  (A-11)

It is not necessary to consider any external forces for the purposes of this

example; thus, Qr will be zero. Substituting in Iagrange's equation yields

mY2 - 3 (Yl " Y2 " 1) - ,- (Y3 - Y2 + le) = 0

" -3 (Yl - Y2 - l1) + 3! (Y3 - Y2 - le) = 0
(A-12)

mY3 +3 (Y3 - Y2 + l1) = 0

m + I (yj _ Y2 10) = 0

Equations A-12 can be put into matrix-form as indicated in Section II:

[ms2 + k]IqI = IQI (A-13)

wherc

0 0 0 0

0 I

90  0 0
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-EI E1 El
6 I EI EI

o 6 2 -I 3EI -3 I
[kJ

EI 0 EI

The modal matrix can now be found:

1 0 -2 0

[ ] 02 (A-1 4)

If the degrees of freedom of interest were limited to, for example, the two rigid-

body modes and just one elastic mode, then, from Section II,

I 0

1-2

0

0

r.)] [a-12]
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The [Y] matrix can also be calcu lated ear described in Section II, and

oms2  0 0 0

0 fpM + 12s2 0o
] (A-16)

o 0 6ms2 + 5 IE- o

o o 0 2m +4 E212),2 + 61EI ( L2

L ~2

Following Section II,

3= [~2 0a+)2

: 6ms2 + 54 ! (A-17)

[yr] =13

From this information, [Xoo] can be calculated direc,,l, fiom Eq 47:

[X001]  . [DO] -[Yool I o[DO T  (47)

r- 0 0 0

m2 12  2 -2
) 4 2- -2

2 1 2 12 12

XoJ = 12 2 2 (A-18)L 02 2 ml -

61E( + 1212

l-2 m -
0T 12



As described in Eq A-1 throvgh A-9, [] con also be calcatedwithout the
knowledge of [PO]-IX-- n lobecluatdwthu h

With the system restrained in translation, and rotation at the center of

gravity (mass two):

'EI
Ilam transl = M3

EI'

3EI

J'm roti = ml

3 [~ ~ ](A-19)

TO = r 1  -I1

No = [~
o3.
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Equation A-5 yields

(f'i'll:I)g 0 0 2 00

1 0 0 0 01

0 0

1 1 o

X ml3  m13  0 I (A-20)

3EI 3EI 2m + L

m13  m13
L3EI 3EI

?11
27EI

[X g] 0 2m2112  2 (A-21)
0 3EI(2n + 2)
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Equation A-6 yields

I M1 0 01
5= - -5 -I n

I .co4 mi3 m13 0 0i-c

2m~ 000L

S1 1 0 0 0 0

3n012 0 -0

2m + 1- 0 0 0 m

0 0

0 0 0 100

X m13  m13 0 0 (A-22)

m32
-3E 3E1

27EI 2

LX (f+oI )93 (3".-23)

7m1 2

E E1 (2 1 n 4 J



From Eq A-7,

13  13
27E1 27EI

IX(f+oo)g] mI 2  - mI 2  (A-24)

2 + 2/
3EI (2m + L2 3EI(2m +12)2

Equation A-8 yields

05E+' -'][ ]' 27E1-7I 0

S0 13E1 (2m +

5 + 122

0 1i 1 1 0 1r"1l2 _ m12

3EI(2M + 2 3E(2m + L2

3  
mI 2 127EI 2

13EI(2m I 0 

+ -(A-25)
2 7EI i IIL27E 3EI(2 + 2)
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i3 221 +3 + 413 +m 213 + 2m1I12

27EI oF" 2m '--- 27E 2)

3E m 3EI(2 +

X (+0M I lt4-3 2,P13 + 2m11 2  1' 2m2 13 + 2i 2 (A-26)

+ )2 27E1 + 2

3EI(2l + L2!- (A- m +TL

Now IX (f+1 can be construCt ed from Ecq A-21, A-2.5) A-24, tuid A-26:

213 1 3  1
27EI 0 2 7E 27E1

2jr.21 m112 - m12 2

3E(2m + L-2 3EI(2m + 3E1 (2m + 2

m1L 2m21 3 + 2mI 413 2m2 13 + 2ml1 -2
27EI 1 2 27EI 20 -,r 2m + L-2

3E (2r + TO 3EI(2 + 2- 3E1(2m

13 11112 413 2m2 13 + 2m-ii 2  51 Pm213 + 2ml112
27EI + ~2 -27PI +12 ~7-I 12

Before solving for [Xco] from Eq A-3, it will be necessary to find H from

[6 [KIT (-28)
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0 0 0 0(A-29)
Ef 1 -2 0 1 1

Subtracting Eq A-29 from Eq A-27,

0 0 0 0

2m21 mIO m12

3EI(2m + 12 3E(2m + !-R2 13- 2m 
+ 2

+12) 12 , 12
0 m12  13 2m213 + 2ml 2  13 + 2m213 + 2mli 2

m12 13 2m213 + 2mil12 13 2m213 +2mJ.1 205 + ~ (E 2

(A-30)

Algebraic manipulation yields

o 0 0 0

0 m21 m2  M12

35EI (2m + 12 3EI (m + 12 3EI(2m + 12)
12 2)

m12 12 1 2
Ixa] 0 2 222 2 2 (A-31)

10 1 2222

S, 2 61EI-2m 21 2[ 3E 1 2) 12 +~ 61EI1 (2m + -
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Equation A-31 reduces to

0 0 0 0

0 4m2 12  2m1 2mJ.
0 2 12 12

X0 ] 12 2 0 2il1- (A-32)

61EI(2m + 12

0 ? Ml -1 1
L 12

The result obtained in Eq A-32proves to be identical to the result obtain in
Eq A-i18, although no use has been made of~ the fourth-mode siape.
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APPENDIX B

ANALYTICAL METHODS OF APPROXIMATE FACTORIZATION

A. CHARPCTERISTIC POLYNOMIALS OF LIGHTLY COUPLED SYSTEMS

Approximate factors of a characteristic polynomial are found directly from

the matrix of coefficients in the equations of motion, rather than by expanding

the determinant of coefficients, and then factoring the resulting polynomial.

The technique employed here involves determining those corrections that must be

applied to a crude first-approximation to the factors. This method is particu-

larly suitable to those cases where the diagonal elements of the determinant of

coefficients are the major contributors to the characteristic polynomial. The

case to be considered here is that of -a 3-degree-of-freedom system having a deter-

minant of coefficients of the following form:

s + a1 1  a12 b1 3 s + a 13

A(s) a21  s+ a22  b25 s + a 2 3 (B-I)

a31  a32  s 2 + b 3 3s + a33

where-A(s) is the characteristic polynomial, and aij and bij are

real constants

This could represent an airframe with two rigid-body degrees of freedom and one

elastic structural mode (as per Eq 74). A(s) can be expa. i._c about the third

column, giving

A(s) = P(s) + Rl(s) + % (s) (B-2)

s + al I a1 2

where P(!) - 2 + b531 + a7)

1 821 s + a221

R1(s) = -(b 2 3s + a23) s  + a ,1  a 12 1
a31  a,2

(b ,s 4 a 3) - 2l s + a2
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P(s) can also be written

P(s) = (s 2 +s+y2)( 82 + as+ x 2 )

= S4 + (M, + )S3 + (x2 + Y2 +a)82 + (ay2 + Px2)s + x2 A (B-3)

= s4 + Bs4 + Cs2 + Ds + E

where by direct comparison

B m +P

c = 2+y2+C x2 + YB2 + P(B-4)

E=x2 y

and by comparison with Eq B-2,

x2 = a11 a2 2 - a1 2 a 21

m = a11 + a22 (B-5)
0

y = a33

fl = b 3 3

The complete 6(s) is also of the form of Eq B-5, but with slightly modified fac-

tors and polynomial coefficients due to the added R,(s) and R2 (s;. because the

modified polynomial coefficients are directly avails le from E. B-2, it is perti-

nent to relate increments in the coefficients to increments in the factors. Then

the approximate factors of &(s) will be the factors of P(s) as modified by-these

increments. Proceeding ,L-g '..ne lines by taking differentials in Eq B-4,

dB = dm + dP

dc = dX2 +dy 2 + ip + Pdm
(B-6)

dD = adY2 + y2d+ax"+ xdo

U.= )?-,-21 y2dx2
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Because R1(s) + R2(s) ,s of seeond decree, dB = 0, whereby

dm = -dP (B-7)

Substituting Eq B-7 into Eq B-6,

dC = dx2 + dy + (m - P)dP (B-8)

dD = ady' + Pdxc+ (x2 -y2)d3 (B-9)

dE = x2dy2 + ydx2  (B-10)

Eliminating dP by combining Eq B-8 and B-9 gives

dC - d3X2 - dy-2  dD-aY x (B-11)
M - P x2 - y2

Solving Eq B-1 for dx 2 ; - (B12)

Substitubing Eq B-12 into Eq B-11,

dC - dE X2 Y2 )2 d2 d x~2-x Y2

y2 Y2 (B-13)

Then, solving Eq B-13 for dy2 ,

(y2 - y 2)(y 2 dC - dE) + (G- 1)(ydD - tdE) (B-14)

By solving Eq B-10 for dY2, and by substituting the result into Eq B-11, a E. -Ilar

expression for dx2 can be found:

= (Y2 - )(dE - dC) + (- 0)(a - ) (.-,5)

(Y2. _2) 2 + (a _P)(a'2 _ 2)
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Expressing Eq B-i 4 and B-15 in terms of finite differentials (rather than infin-

itesimal), and collecting terms,

(y2 - x2)2 + (m- _ ) . (B-1 6)

4?P +y2 - x2 + (a _ p)IVE + [P(y2 - x2)]Ct + [Y2O(m - P&3)j B-1 )
(y2 - x2)2 + (, - 3)(a - (B2)

Considering that Eq B-I is representative of an airframe with one elastic

mode included in the equationR of motion, L(s), in terms of the factored forms

of Table I, would be given by

A(S) [ + (2t,)Sp + [S2 + (2tep),es + 2e] (B-18)

where

2
"le = 2 + 6Y2

Therefore, using Eq B-5, B-16, and .8-17, the approximations to the characteristic

frequencies are given in terms of the matrix elements by

[i3r - alla:2 + a1 2 a2 1 + (a 11 + a22)(a11+a22-b33)16E

-[(alla22- a 12 a2 1 )(a 3 3 - a1 1a2 2 + a 1 2 a 21 )] LC

2 [(a 1a 2 2 - a 1 2a 21 )(a 1 1 +a 2 2-b33)]6D
O)sp amla22- a12a21 + (a33-a11a22 + a1 2 a2 1 ) 2

( a2 - b3 3(3 lla22 - am 221

(a 11 + a22 - b33 )[(a11 + a.2)a33 - .

(B-19)
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- 33 "a 1 1 a2 2 + a128a01 + b 3 3 (a1 1 
+ a22- b33) AE

+[a33(a 3 3  a 11 a 2 2 + - _AO

-22-b 3 1Ale a3 + 1
le 33 + (a33 - a1 1 a 2 2 + a 12 a 2 1 

)  (B-2)

+(a11 + a22 - b5 )3 a11 + a22)a33 - b33(alla 22 - a12 a 2 1fl

AC = -a31b13 - a 32b2 3

AD = -a 1 3a 31 - a 2 3a 32 + a31 (a 1 2b2 3 - a 2 2b1 3) + a32 (a 21 b1 3 - a1 1 b2 3) (B-21)

A a1 3(a21a32 - a22a31) - a 2 3 (alla 3 2 - a1 2 a5 1)

Equations B-19 and B-20 represent first-order corrocted ,alues for the squares of

the short-period and first elastic-mode frequencies when f1 (s) and R2 (s) are added

to P(s) to give A(s) (Eq B-2). However because Eq B-19 and B-20 are very un-

wieldy, it is desirable to simplify the two corrections. Subject to a reasonable

set of validity conditions, some relatively simple relations can be found. Con-

sider the following:

Dividing Eq B-14 by Eq B-15 gives

dy2  - (2 - x2 )(d - _AdC) - (m - ;( - d ) (-22)

dx2  (y2 _ x2)(dE - x2dC) + (a. - p)(wa.E - x~dl) (-2

Dividing :nunerator an denominator by (y2 - x2 ) (dE -xdC),

(d, - + JAR. I oD

dy2 d- - ,\d y1 -2

-dx2-ad 2~ (B-

y9_(x2)(E-

This can be greatly simplified by making the following assumptions (.,hich hp.-.

W: c&a P ved to be true =m ny instances):

y2 dC << dE
YxdC << dE
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Equation B-23 then becomes -

Iy +( " _ )p y d

dx2 1+ ,y-_ 3(c,. 12 ) (B-24)

The following assumptions have also proven to be quite reasonable and will further

reduce the complexit -f the approximation:

Further, assume (y -- ) ( Y y2 ) 1<<

and (c-. ) (- x2 d) <<1

whereby d2 -dy2  (B-25)

Substituting Eq B-25 into Eq B-I0 gives

-y2 x2  (3.26)

T h u s , 2 
( B 2 7Tsp alIa2 2 - a1 2a21 + (--+7)

a 3 3 " a Iiaa2 + a! 2 a2 1  (-7

and, 2 6E
-0 e a 3 , a 33 - a 11 a2 2 + ala(28

Equations B-27 and B-28 are the desired simplifications of Eq B-19 and B-20.

The remaining task is to find corrections to the damping terms in Eq B-3.

Because the frequency corrections are now known, either Eq B-8 or Eq B-9 can be

solved directly for the I-, ., .. o whicb (Eq B-7) are simply of

opposite sign. Because of the relative magnitudes of the nantities .Avclved,

it is presumed that Eq B-9 will give a more accurate result than will Eq B-8;

accordingly,

dP -dc-de -dD aW~ + AY" (B-29)
y2 _x2

Traii ,fN..g back into the 'variables of interest, and replacing differentials with

finite differences,
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S + a + AD - (a1 1 + a2 )b 2 - b3 6x 2F33 - a, 1 a2 2 + a12 a2 1

b D - (al1 + a 22 )6r 2 - b 3  (2B-
3 - a33 - a1 a2 2 + a1 2 a21 (-31)

where AD is given in Eq B-21 and tx 2 and & are the correction terms in Eq B-I 9

and B-20 or in B-27 and B-28.

It is now desirable to have a simpler expression for the damping correction.

Using Eq B-25 in Eq B-29 gives

dp3 = -dm -d' - (m 13)d2 (B-32)

Now Eq B-26 can be substituted into Eq B-32, giving

-d -(2)d
dP = -dm - 2 (B-33)

y

Therefore, Eq B-30 and B-31 can be written

a11 + a 2 2 - 33
aD 1 a+ 1a33 " lI 2 + a221!(2 ;o)5  a11  + 2 + ( -____)

a n3  - a1 1 a 2 2  + .qm1

and L~~D + al + a2 2 - ) 3 6E
( ab33 - a, 1a2 2 + a 12 a 2 1

le  - 3. a 33 - 1 1a2 2 + a12a21  (1_3)

The following is a summary of validity conditions which allow use of the
simple approximations given by Eq B-27, B-28, B-34, and B-35. If these validity
conditions are not satisfied, then Eq B-19, B-20, B-30, and B-31 must be used;

in this case only the first validity condition listed below is necessary,
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Validity Conditions

1. The correction terms are all small (on a percent basis).

a3__ and l(aila2a -a 1 2 a21 )l

3 a~~ a 2 2 - b 33  1b E

3. I~a,3a" a 1 1a 2 2 + a 1 2 a 2 1J 33 - a E3  1

and

r all I a22 - b 33 a ]
a[a2 + 1  a (a 1a2 , al)&D]<

[a,,al) + a22 + a12a2i 11 a 2 2 - (alla2 2 - a1 2 a2 1 ) « I

The method described above is directly applicable to the case where the

equations of motion include 3 c,!grees of freedom. If 4 degrees of freedom are

included, a similar technique can be used, but must be applied twice--once to

get approximate factors for the upper left 3 x 3 part of tle 4 x 4 determJ.nant,

and once again to correct these factors.

B. APPROiMATE FACTORS FOR HIGHLY COUPLED SYSTEMS

The fundamentals of this method can be summarized briefly cs follows. First,

the exact factors (in numerical terms) must be known for a case where the param-

eters in the equations of motion take on typical values. Then, approximate literal

factors (in terms of the polynomial zoefficients) are found by solving the simulta-

neous equations which relate factors and polynomial coefficients; in this process,

numerically small terms h,,, n. .t v I.Pe n- ted. Tt n, because the polynomial

coefficients are defined in terms of the stability deriva oveL in the equ-°ions

of motion, the approximate factors can also be expressed in these terms. A more

detailed description of this method is best presented in the form of a set of

instructions. Although a transfer function denominator Is considered in the

following set of instructions, the method is also applicable for finding numerator

£actorr:

I. obtain exact transfer function factors in numerical terms for a typical

set of parameter values
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2. assume the denominator of the transfer function factors as (e.g., for a

sixL-uiqer denominator)

s6 + BS5+ cs +rTO +Esr + Fs +G [ 2t2w)s + ]

[s2 + (2(I)D),s + 2e]

" [2 (2tu)2es + '{e]e

3. expand the factors in Step 2, and match ccfficiersts of s, giving six

equations in six unknowns to solve

4. throw away those terms in Step 3 that are very small (by knowing exacb

numbers)

5. solve s:Implified equations (from Step 11) for (2n) s p , 2p, etc., in terms

of B, C, D, E, F, and G. This gilres approximate frequency and damping

terms as functions of polynomial coefficients

6. expand the determinant of coefficients in the equations of motion in

literal terms

7. match coefficients of s from Step 6 with thoc in the polynomial on the

left side of the equation in Step 2

8. throw away terms that are very small -(by knowing exacL numbers) in Step 7.

This gives approximate expressions for the polynomial coe-ffcients in

terms of coefficients in the equations of motion

9. combine results of Steps 5 and 8 to get approximate expressions for fre-

quency and damping terms as functions of coefficients in the equations of

motion.

The applicability of :.I. " . i -..: ingert .,. one being able to solve the equa-

tions in Step 5; these equations proved to be solvablc i- @1 cases zrcrsidered in

this study.
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APPENDIX C

DESCRIPTION OF CONFIGURATIONS

The data presented in this appendix describe the vehicles and the flight

conditions which were investigated. No data are shown for Configuration 1

because the study of that vehicle was discontinued early in the project.

The information necessary for the calculation of the aerodynamic matrices

may be found in Table C-I (the aerodynamic parameters), and Table C-VIII (the

flight conditions). Tables C-II, C-III, and C-IV present the mode shapes and

slopes for the three configurations, and Tables C-V, C-VI, and C-VII present the

[(f+ o )] matrices. A profile view of each airframe with the control surfaces

shown may be found in Fig. C-4 through C-8.

78



'.r.
$40$4 

~

-
0

C.)1 \D t

.~ ~ ~ ~ ~ ~ .& " -4 1 :?

'd '.t I 0

HCCj 
r'.0

>

43 43i 

4

;4 $

00 t

- ~+ 
4J -- k

H 4to 2

to4 to -Hr

rd 0

C! 0

i~-ID
,r.4 $6

H H0 
to 

83 C

E-44

00-



First- Elastic -Mode-
8.3 .94- rod/sec7

Second Eladstic Mode-

-FNSE ,- ELASTIC - .. DES -FOR -CONFIGURATION- 2-
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TABUZ C-I1

MODE 01101-0 AUD FI.WClE:G

CONFIOURTION 2

MODE 11. 1 2 hi

FR"T.QUENCY, c 0 0 1 21 34

Mocl -D--fleet lori

Cn nn r 1 .0 .J1;53 0o 241 o004 1

Wing 1.0 0J .034i18 -0-0388

Mole S31op'2o

Cq'nar~t 0 1.0 o.0004S2 O.00W52

Wing 0 1.0 -0."-,8 0.000183



First Elastic Mfo!-'?
W3 7.53 rod/sec

Second Elastic Mode-
-e4-27.02 rad/sec

/ FIGURE C-2-. ELASTIC MODES
FOR CONFIGURATION ~3
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TADB., C-I1

MODE M1AP3 AUD FiEQJICI,'M

C0:u'IGUIJATIOIN 5

MODE NO. 1 2 |

F"IEQU CY, CpC 0 0 1.lq 4.5

MWxl Da-flectiona

TFLil 1.0 0( -0.1y3) 0. 1 0

I/4 Chord Strip I 1.0 -120 -O.OO76 -0.021

1/1, Chord Strip II 1.0 14.3 - .0455 -0.0-,

1/4 Chord Strip III 1 .0 208 0.178 0.0283

Mode Slopes

Tail 0 1.0 -O.0863xl0 "3 0707XIO0"

Stream Slope 0 1 .0 0.0197xI0 "3  -0.204xtO "3

Strip I

Stream Slope .• i 0-3  o.168xio 5

Strip II

Stream Slope. 0 1.0 0.262xl0'3  0. 8f0x0 .3

Strlip III



First -Elastic Mfode

w13 5.95 rad/sec

second Elastic Mode
w4~ 7.74 -rad/sFe,. 7

FIGOW C.-3 . 'L~FC 5E FOR CONFIGURATION 4
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TABLE C-IV

MODE SHAPE AND FREQUENCIES

coNflOuRATiox 4

MODE NO. 1 2 3 4

FREqLhNCY, cpU 0 0 o-948 1.231

Made Deflections

1/4 Chord Strip 1 1.0 -50.0 0.0122 -0-0258

1/4 Chord Strip 11 1.0 25.0 -0085 -o.o1435

1/4 Chord Strip 111 1.0 100 -0.010i o.o644

3/4 Chord Strip 1 1.0 1.50 0o0133 -o.0477

3/4 Chord Strip 11 1 .0 175 O.0U41 0.00212

3/4 Chord Strip 111 1.0 20n ~ ~ J 0.115
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TABJI C-VIII

FLIGItD COMiTIONG

DYUIAMIC FORWARD
pRWO SURE, B3PM WIINo AIMITUDE,CONFIGURATION pc n/ io. NO ft

.)1050 2,060 I.84 0
2

12,960 3, Yo 2.96 0

639 1,003 O.97 20,000

1,197 1,003 0.90 0

858 2,430 2.37 22,500

1,717 2,430 2.)O 0, 000

4,250 2,490 2.50 20,000



Sta. Sta. Sta. Sta.
0 250 900 i200

S260 in. -

Note: Stations shown in inches

Area of canard (total for b3oth sides) =7000 in. 2

Area of wing (total for both sides) = 6P.,4oo in. 2

Figure c-4. Configuration 2
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Span
Sta.

0
Fuselage
Station Note: Dimensions and stations

9 in inches

Airplane symmetrical
about It

Span
I Sta.

0 ------- Engine Nacelles

20012I

Sta.523 575
C.G.

Elastic Axis .
(35% chord)

# 80-

Span
Sta.
69o

Figure C-5. Configuration 3
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Span 1tote: Stations in inches

Span

Sta.
'A Span

z ~ x j Sta. S asSta."< 1i i I f60 Span

Span
Sta.

Strip IN, 690

Elstic .-..
Axis j.

strip II

Strip M
lI-

I
S11 Chord .c~ p

tr Area p Side Span Sta. Sta.

1 180 in. 11.14xI0 in. 2  "  I u,5

i lII Ih0 in. .22x104 in.52 64 57.6

II 100 in. 2.30xi04 in.2 575 732.6

Tail 100 in. 2.0 x10 in.2  0 1100.0

Figure C-6. Aerodynamic Strips for Corfigur.tion 3
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Fuselage
Station

0-

Note: Stations in ihes

Airplane symmetrical about

550-

Wing Mounted Store

C.G. 5o -- I

I,\I
I

I I
I I

750-- LU
I00- Spin

n -T5 Span Spn
rsaSta. Sta.

, 25 200 2(5

Figure C-7. Configu'ai on
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Area per Span Sta.
Strip Chord qide of C.P.

I 400 in. 20000 in.2 0

11I 300 in. 30000 in.2 100

I1 200 in. 20,000 in.-  200

Contro 50 in. 7,500 in.2 -
Surfac _____

, I I
Note: Stations in inches

It5o [
A

Strip I S

I 525- 1 \

i \C

Str-i? II F.S

F.S.

7 o0 3/4c

I-

Figure C-8. Aerodynamic Strips for ;onfi(,,.ration It
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APPENDILXDT
NUMERICAL EQUATIONS OF MOTION,

i APPROXIMATE FACTORS AND EXACT FACTORS

This appendix presents the majority of the numerical dhtt, for the report.

The numerical equations of motion of the three vehicles are given in Fig. D-i,

D-2, and D-3, and include iie static aeroelastic correction for the modes not

included. Tables D-I, D-II, and D-III present the exact factors for the equa-

tions and the values obtained with the approximation formulas presented in

Section III.
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TABLE -I

NUMERICAL VALUES FOR EXACT AND APPROXI14ATE TRANSFER FUNCTION FACTORS
CONFIGURATION 2

Transfer q = 35.0 psi q = 90.0 psi

Function 3 Modes 4 Modes 3 Modes 1 4 Modes
Factor Approx. Exact Approx. Exact Approx. Exact I Approx. Exact

-42 7.31 7.33 7.36 7.4o 22.0 -22.1 21.9 22.4

(2.) sp •335 .338 .328 .336 .379 .373 .336 1 39
ae 73.5 73.5 73.5 73.5 61.7 61 .6 62.1 61.5

(2tw) 1 e .074 .072 .074 .080 .200 .196 .204 .276

2 - - 444 444 - - 416 414

(20)2e - •.303 .288 - - .835 .790

I/TwI  4371  -137 -125 4 25 --264 -264 -202 - -- 201

83.0 83.0 83.0 83.0 88.8 88.7 88.2 88.9

-(2.t-Wl .219 .219 .219 .219 .299 .299- .302 .298

24 452 451 - - -437 437

-(2)- - .532 .531 - 1.01 1.03

1/T-1  .236 .242 .240 .241 .377 .381 .377 .381

a 83.1 T 83.2 83.0 83.1 88.8 88.7 88.2 89.0

(2au)e)1  .08I .084 .085 .085 .1041 .104 .107 .104

42- - 452 452 - - 437 436

-(2g)0 - .207 .202 - .482 .466

1 5.77 5.85 5.84 5.85 16.2 i6.2 16.5 16.3
16.

.(23a)) 31 .370- .382 .373 .386 .533 .551 .517 .558

2 2 4114 444 - - 416 - 416

-(2tw) .,2 - - .086 .o84 - M05 .381

1/T1 - - -2.43 -2.39 3- 99 -3.62

1/Tg4 . - - 2.63 2.71 - - 4.26 -4.1-

242 87.6 86.5 101 95.9

(2w) 2 .0370 - ._____

99



TABLE D-II

NUMERICAL VALUES FOR EXACT AND APPROXIMATE TRANSFER FUNCTION FACTORS
CONFIGURATION 3

Transfer a = 4.43 psi q = 8.31 psi

Function 3 Modes 4 Modes 3 Modes 4 Modes
Factor~ Approx. 6xact Approx. I Exact Approx. Exact Approx, Exact

atsp 13.05 12.78 12.6 13.2 21.2 19.6 21.0 21.1

(2t)sp 2.43 2.38 2.46 2.42 3.61 3.84 5.97 3.85

Oe 123 123 120 121 170 169 163 166

(2ta))ie 3.58 3.62 3.64 3.65 6.03 5.86 6.03 6.00

e - - 836 827 - - (o8 884

(2tw)2e - 2.77 2.86- - - 4.56 4.82

1/Tw1  88.7 '89.0 91.5 90.8 78.2 78.3 85.2 83.5

122 -122 118 121 165 166 157 163

(2tn)wI  3.55 3.53 3,47 3.58 5.47 5.43 5.69 5.62

2 - 699 688 - 684 664

( )- .593 .588 .- .02 1.12

1 /TO, .920 .910 .924 .918 1.53- 1.51 1.53

el 122 122 118 121 165 165 157 163

(2w))e, 3.57 3.55 3.47 - 3.60 - 5.62 '5.54+- 5.69 5.73

0e - [9 695 68-(

(2t)e2 593 .4+96 - . 1.02 .780

1 7 14,5 124 -135 251 286 -230 228

531 5.56 5.56 .51 I 140.68 -1 0.52 10.521 7 "73 6.55

' 2 ) 3 - - - - - 6 3 9 0 5 9 8 7

(-) 7-'- 7.2') - [ 5P.6 59.7
-I 19.5 18.9 - 27.7 26.7

1(2) 1 1.25 1-.10 - 2.02 1.78

4112 " - 124 1 - 166 17

2- ".5 1.10 - 2.02
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